
VICC
Introduction

Virtual Incident Command Center (VICC) aims to provide a system that allows a large-scale
event to be monitored. This system includes tools that allow people who are running the event to
communicate, coordinate emergency vehicles, monitor the event through cameras, and use social
media mining to gather useful information about the event. There are many components to this
system including a solution to track the location of an emergency vehicle with a corresponding
map, a camera that takes pictures of the event, an Android app that participants can use to
coordinate, and a web app that gives a command center view of the event. In order to connect all
of these reliably, we use IBM’s Bluemix.

Approach and Results

A. IBM Bluemix
IBM Bluemix is a cloud service that allows developers to design applications that are easy to
deploy and manage on the cloud. Bluemix offers many services and API’s that can be easily
integrated into an app. Three primary services that we used are the Internet of Things Foundation
(IoTF), List databases, and Node-Red.

i. Internet of Things Foundation
One of the services that is an essential part of this project is the Internet of Things Foundation
(IoTF). This service deploys a MQTT server for your application that allows devices to connect
and publish/subscribe to content. Each device that connects to the IoTF must be registered on
Bluemix and be assigned an API key. The key, along with a unique identifier that is assigned by
the developer (i.e. a member of VICC), are used for authentication for the IoTF’s MQTT server.

ii. Node-Red
The centerpiece that ties everything together is a Node.js application that is editable through a
Node-Red interface. Node-Red provides a way to plug together various applications, API’s, and
network interfaces into an easy to use flow. Each entity that processes data is referred to as a
“node”. Each node has specific parameters that manipulate the data, then the data is passed on to
the next node. The data is passed in a JSON format. Figure 1 represents an example flow. -- Go
through and label each node.
iii. ClearDB MySQL Database

The ClearDB MySQL Database is service that is associated with Node-Red web application and
is accessible via a MySQL node within the Node-Red flow. Using Node-Red, queries and can be
sent to the database to search for, update, insert, or delete data. HTTP GET requests nodes also
handles JSON encoded input from the VICC Android application and send update queries to the
MySQL node. Database responses from the node are handled by helper functions and can either
be sent to the Map node or output as JSON encoded HTTP responses to the Android application.

B. Raspberry Pi with GPS and Camera
To track the location of vehicles and to have a view of the event, we incorporated a GPS and
Camera with the Raspberry Pi 2 Model B. There will be modules that are solely GPS enabled
and modules that use the Camera and the GPS, so the pictures taken from the camera can be geo-
tagged. The camera is a Raspberry Pi Camera Board and the GPS is Adafruit’s Ultimate GPS
Breakout Board.

i. GPS Flow
In order to make each unit consistent with IBM’s Bluemix, an instance of Node-Red is installed
on the Raspberry Pi. Node-Red on the Pi is very similar to a regular instance of Node-Red,
accept that it allows for memory-usage control. This is a very attractive feature for a memory
constrained device like the Pi. After the instance of Node-Red is started, it can be accessed
through a browser on the same network as the Pi, or on the Pi itself. [Please see the Starter-Kit
for more information]. The flow that is used to gather data from the GPS is shown in figure x.

The flow takes the GPS data straight from the serial port and then this data is sent to a javascript
function. The javascript function parses the data and converts it into a JSON document. The
parsing function focuses on the GPGGA parameter in the GPS data stream (the GPS uses the
NMEA protocol). The GPGGA parameter offers latitude, longitude, and time. The GPS also
provides altitude and information about how many sattelites it is using to fix its position, but to
get this information you would need to look at the other NMEA parameters. Once the
information is parsed and converted into a JSON document, it is then sent to the proper instance
of the IoTF where the data can be used from there.

ii. Picture Flow
The Node-red application that has the GPS flow also contains the flow that requests pictures
from the PiCam. There are four nodes that take the picture and send it to Bluemix via a
websocket. These nodes are shown below in figure x.

First there is an injection node that triggers a command to take a picture every five seconds. The
node it triggers is a system node that uses the command “raspistill -vf -hf -w 640 -h 480 -t 1000
-o” to grab a picture and send it to the next node. The next node encodes the image using base64
and finally sends the node to a websocket on bluemix called
“ws://picamtest.mybluemix.net/picampicture”.

There are other components to this flow that are not essential to take a picture, but add
information and functionality to the overall system. The first component uses IBM’s Alchemy
API to determine if there are faces in a picture, the age range of each person in the picture, and
the gender of each person in the picture. Each picture that is taken is sent the Alchemy and the
information that is retrieved is put into JSON format and sent to the same websocket the pictures
are sent through. The last component of this flow sets up a small webserver on the Raspberry Pi
that displays the data retrieved from the camera and the results of sending the picture to the
Alchemy API.

C. Displaying Pictures and GPS coordinates
Once the pictures and the GPS coordinates have been retrieved and sent to Bluemix, both need to
be displayed. In order to display the GPS coordinates, there is a Node.js application with a Node-
Red flow that has a mapping node. This mapping node creates an icon at the location that is
represented by the GPS coordinates. A separate Node.js application has a Node-Red flow that
displays the pictures on a webpage. Figure x shows the flow that takes an incoming picture and
displays it on a webpage. The code inside the “Display” node can be found in the starter kit.

The top left node (“[ws]/ws/picampicture”) is an open websocket that takes in the pictures and
information from the Alchemy API and transfers it to a new websocket that can be accessed at
this address: http://picamtest.mybluemix.net/face.

D. Android Application
For increased usability, a VICC Android application was developed that would push location and
sensor data to the web application’s database, similar to the Raspberry Pi, as well as allow the
user to access the VICC chat room and map to communicate with and view other users. The
Android application, named VICC, was developed using Android Studio and contains a single
MainActivity class, a DataUpdateService class, and two helper classes, JSONParser and
Variables.

The MainActivity class is an activity class that extends the FragmentActvitiy class and
implements the ActionBar TabListener interface. The MainActivity class uses fragments to easily
allow the user to switch between three different layouts associated with the activity. The three
layouts are the data layout (Android 1), chat layout (Android 2), and map layout (Android 3).
The data layout displays the connectivity state of the Android application with the web app,
allows the user to select a current status, and shows the real-time sensor data for latitude,
longitude, altitude, air pressure, speed, and bearing. The chat layout is simply a webview that
points to the VICC Zopim chat URL, the same one used in the iFrame of the VICC Interface.
The map layout is also a webview that points to the VICC GPS Map URL and will display all of
the same variable data shown on the map application on Bluemix.

Android 1: Data Layout Android 2: Chat Layout Android 3: Map Layout

http://picamtest.mybluemix.net/face

The DataUpdateService class extends the Service class and implements the LocationListener and
SensorEventListener classes. The DataUpdateService class is initialized by the start of the
MainActivity class and, as a service, can run after the user exits the MainActivity fragment view
but does not completely close the application; this means that the user can open the VICC app
and then use other apps while the DataUpdateService runs in the background on a separate
thread. The DataUpdateService class initially accesses the phone’s sensors and GPS/Network
connectivity and then attempts to connect to the VICC database. If a connection is made and the
service is able to access the device’s sensor data, the DataUpdateService class pushes data to a
PHP script via JSON encoded HTTP POST requests. The DataUpdateService class first tests
both the network and gps connections to make sure it can successfully accesses the web app and
push data as well as to retrieve certain location data. First, the network connection is test, if it
succeeds it is used to push data as well as retrieve latitude and longitude data BUT NOT speed
and bearing data, else if gps succeeds, it is used to push data as well as retrieve latitude,
longitude, speed and bearing data. The DataUpdateService class also accesses the ambient air
pressure sensor data from the phone and uses it to calculate the device’s altitude given the
standard atmosphere variable constant. All the data is encoded into a JSON object and then,
using the JSONParser helper class, is pushed to the PHP script’s URL on the web application
and also retrieves and response message from the PHP script (error or otherwise). The
DataUpdateService class runs continuously as a service until the VICC application is closed and
will attempt to update the VICC database with the latest sensor data every two seconds.

E. Interface
The Interface web application was created to bring together everything that was developed over
the semester into a single web application that could easily be displayed for the fall Open House.
The Interface web app is hosted on Bluemix and its index page (the one the browser initially
points to) is simply an HTML page that contains a header, some text information, and three

iFrames. The three iFrames display the GPS Map, VICC Chat, and Facial Recognition
respectively.

Future Work
There are many areas of improvement for VICC including further development on the web and
mobile applications. Increased functionality could be added to the map and interface web
applications that allowed for user sign in and account creation as well as event planning and
management. Increased functionality could also be added to the Android application that
allowed users to sign in and/or create an account that then allowed for user disambiguation and
would allow user data to be recorded and managed easily by the web app.

The IBM Bluemix easily allows for further development that would possibly make the VICC
project a practical tool to incident and event management professionals.

